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Chapter	5
Simulation	Modeling:
Concepts	and	Practice
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This	chapter	presents	the	basic	concepts	and	demonstrates	the	managerial	use	of	a	simulation	model,	which	is	a
computer	representation	of	a	problem	that	involves	random	variables.	The	chief	advantage	of	a	simulation	model	of	a
problem	is	that	the	simulation	model	can	forecast	the	consequences	of	various	management	decisions	before	such
decisions	must	be	made.	Simulation	models	are	used	in	a	very	wide	variety	of	management	settings,	including
modeling	of	manufacturing	operations,	modeling	of	service	operations	where	queues	form	(such	as	in	banking,
passenger	air	travel,	food	services,	etc.),	modeling	of	investment	alternatives,	and	analyzing	and	pricing	of
sophisticated	financial	instruments.	A	simulation	model	is	an	extremely	useful	tool	to	help	a	manager	make	difficult
decisions	in	an	environment	of	uncertainty.
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5.1
A	Simple	Problem:
Operations	at	Conley	Fisheries

The	central	ideas	of	a	simulation	model	are	best	understood	when	presented	in	the	context	of	a	management	problem.
To	initiate	these	ideas,	consider	the	following	practical	problem	faced	by	Conley	Fisheries,	Inc.

Operations	at	Conley	Fisheries,	Inc.

Clint	Conley,	president	of	Conley	Fisheries,	Inc.,	operates	a	fleet	of	fifty	cod	fishing	boats	out	of	Newburyport,
Massachusetts.	Clint's	father	started	the	company	forty	years	ago	but	has	recently	turned	the	business	over	to	Clint,
who	has	been	working	for	the	family	business	since	earning	his	MBA	ten	years	ago.	Every	weekday	of	the	year,	each
boat	leaves	early	in	the	morning,	fishes	for	most	of	the	day,	and	completes	its	catch	of	codfish	(3,500	lbs.	of	codfish)
by	mid-afternoon.	The	boat	then	has	a	number	of	ports	where	it	can	sell	its	daily	catch.	The	price	of	codfish	at	some
ports	is	very	uncertain	and	can	change	quite	a	bit	even	on	a	daily	basis.	Also,	the	price	of	codfish	tends	to	be	different
at	different	ports.	Furthermore,	some	ports	have	only	limited	demand	for	codfish,	and	so	if	a	boat	arrives	relatively
later	than	other	fishing	boats	at	that	port,	the	catch	of	fish	cannot	be	sold	and	so	must	be	disposed	of	in	ocean	waters.

To	keep	Conley	Fisheries'	problem	simple	enough	to	analyze	with	ease,	assume	that	Conley	Fisheries	only	operates	one
boat,	and	that	the	daily	operating	expenses	of	the	boat	are	$10,000	per	day.	Also	assume	that	the	boat	is	always	able	to
catch	all	of	the	fish	that	it	can	hold,	which	is	3,500	lb.	of	codfish.

Assume	that	the	Conley	Fisheries'	boat	can	bring	its	catch	to	either	the	port	in	Gloucester	or	the	port	in	Rockport,
Massachusetts.	Gloucester	is	a	major	port	for	codfish	with	a	well-established	market.	The	price	of	codfish	in
Gloucester	is	$3.25/lb.,	and	this	price	has	been	stable	for	quite	some	time.	The	price	of	codfish	in	Rockport	tends	to	be
a	bit	higher	than	in	Gloucester	but	has	a	lot	of	variability.	Clint	has	estimated	that	the	daily	price	of	codfish	in	Rockport
is	Normally	distributed	with	a	mean	of	µ	=	$3.65/lb.	and	with	a	standard	deviation	of	s	=	$0.20/lb.

The	port	in	Gloucester	has	a	very	large	market	for	codfish,	and	so	Conley	Fisheries	never	has	a	problem	selling	their
codfish	in	Gloucester.	In	contrast,	the	port	in	Rockport	is	much	smaller,	and	sometimes	the	boat	is	unable	to	sell	part	or
all	of	its	daily	catch	in	Rockport.	Based	on	past	history,	Clint	has	estimated	that	the	demand	for	codfish	in	Rockport
that	he	faces	when	his	boat	arrives	at	the	port	in	Rockport	obeys	the	discrete	probability	distribution	depicted	in	Table
5.1.

TABLE	5.1	Daily	demand	in	Rockport	faced	by	Conley	Fisheries.
Demand	(lbs.	of	codfish) Probability

0 0.02
1,000 0.03
2,000 0.05
3,000 0.08
4,000 0.33
5,000 0.29
6,000 0.20

It	is	assumed	that	the	price	of	codfish	in	Rockport	and	the	demand	for	codfish	in	Rockport	faced	by	Conley	Fisheries
are	independent	of	one	another.	Therefore,	there	is	no	correlation	between	the	daily	price	of	codfish	and	the	daily
demand	in	Rockport	faced	by	Conley	Fisheries.

At	the	start	of	any	given	day,	the	decision	Clint	Conley	faces	is	which	port	to	use	for	selling	his	daily	catch.	The	price
of	codfish	that	the	catch	might	command	in	Rockport	is	only	known	if	and	when	the	boat	docks	at	the	port	and
negotiates	with	buyers.	After	the	boat	docks	at	one	of	the	two	ports,	it	must	sell	its	catch	at	that	port	or	not	at	all,	since
it	takes	too	much	time	to	pilot	the	boat	out	of	one	port	and	power	it	all	the	way	to	the	other	port.

Clint	Conley	is	just	as	anxious	as	any	other	business	person	to	earn	a	profit.	For	this	reason,	he	wonders	if	the	smart
strategy	might	be	to	sell	his	daily	catch	in	Rockport.	After	all,	the	expected	price	of	codfish	is	higher	in	Rockport,	and
although	the
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standard	deviation	of	the	price	is	high,	and	hence	there	is	greater	risk	with	this	strategy,	he	is	not	averse	to	taking 
chances	when	they	make	good	sense.	However,	it	also	might	be	true	that	the	smart	strategy	could	be	to	sell	the	codfish 
in	Gloucester,	since	in	Gloucester	there	is	ample	demand	for	his	daily	catch,	whereas	in	Rockport	there	is	the 
possibility	that	he	might	not	sell	all	of	his	catch	(and	so	potentially	lose	valuable	revenue).	It	is	not	clear	to	him	which 
strategy	is	best.

One	can	start	to	analyze	this	problem	by	computing	the	daily	earnings	if	Clint	chooses	to	sell	his	daily	catch	of	codfish 
in	Gloucester.	The	earnings	from	using	Gloucester,	denoted	by	G,	is	simply:

G	=	($3.25)	(3,500)	- $10,000	=	$1,375,

which	is	the	revenue	of	$3.25	per	pound	times	the	number	of	pounds	of	codfish	(3,500	lbs.)	minus	the	daily	operating 
costs	of	$10,000.

The	computation	of	daily	earnings	if	Clint	chooses	Rockport	is	not	so	straight-forward,	because	the	price	and	the 
demand	are	each	uncertain.	Therefore	the	daily	earnings	from	choosing	Rockport	is	an	uncertain	quantity,	i.e.,	a 
random	variable.	In	order	to	make	an	informed	decision	as	to	which	port	to	use,	it	would	be	helpful	to	answer	such 
questions	as:

(a) What	is	the	shape	of	the	probability	distribution	of	daily	earnings	from	using	Rockport?

(b) On	any	given	day,	what	is	the	probability	that	Conley	Fisheries	would	earn	more	money	from	using	Rockport
instead	of	Gloucester?

(c) On	any	given	day,	what	is	the	probability	that	Conley	Fisheries	will	lose	money	if	they	use	Rockport?

(d) What	is	the	expected	daily	earnings	from	using	Rockport?

(e) What	is	the	standard	deviation	of	the	daily	earnings	from	using	Rockport?

The	answers	to	these	five	questions	are,	in	all	likelihood,	all	that	is	needed	for	Clint	Conley	to	choose	the	port	strategy
that	will	best	serve	the	interests	of	Conley	Fisheries.

5.2
Preliminary	Analysis	of	Conley	Fisheries

One	can	begin	to	analyze	the	decision	problem	at	Conley	Fisheries	by	looking	at	the	problem	in	terms	of	random
variables.	We	first	define	the	following	two	random	variables:
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PR	=	price	of	codfish	at	the	port	in	Rockport	in	$/lb.

D	=	demand	faced	by	Conley	Fisheries	at	the	port	in	Rockport	in	lbs.

According	to	the	statement	of	the	problem,	the	assumptions	about	the	distributions	of	these	two	random	variables	are
as	shown	in	Table	5.2.

TABLE	5.2	Summary	of	random	variables	and	their	distributions.
Random	Variable Distribution

PR Normal,	µ	=	3.65,	s	=	0.20
D Discrete	distribution,	as	given	in	Table	5.1.

In	order	to	analyze	the	decision	problem	at	Conley	Fisheries,	we	next	define	one	new	random	variable	F	to	be	the	daily
earnings	(in	dollars)	if	the	boat	docks	at	the	port	in	Rockport	to	sell	its	catch	of	codfish.	Note	that	F	is	indeed	a	random
variable.	The	quantity	F	is	uncertain,	and	in	fact,	F	is	a	function	of	the	two	quantities	PR	and	D,	which	are	themselves
random	variables.	In	fact,	it	is	easy	to	express	F	as	a	function	of	the	random	variables	PR	and	D.	The	formula	for	F	is
as	follows:

i.e.,	F	is	simply	the	price	times	the	quantity	of	codfish	that	can	be	sold	(total	sales	revenue)	minus	the	cost	of	daily 
operations.	However,	in	this	case,	the	quantity	of	codfish	that	can	be	sold	is	the	minimum	of	the	quantity	of	the	catch 
(3,500	lbs.)	and	the	demand	for	codfish	faced	by	Conley	Fisheries	at	the	dock	(D).	In	fact,	the	above	expression	can 
alternatively	be	written	as:

F	=	PR	×	min(3,500,	D)	- 10,000,

where	the	expression	min(a,	b)	stands	for	the	minimum	of	the	two	quantities	a	and	b.

This	formula	is	a	concise	way	of	stating	the	problem	in	terms	of	the	underlying	random	variables.	With	the	terminology 
just	introduced	the	questions	at	the	end	of	Section	5.1	can	be	restated	as:

(a) What	is	the	shape	of	the	probability	density	function	of	F?

(b) What	is	P(F	>	$1,375)?

(c) What	is	P(F	<	$0)?

(d) What	is	the	expected	value	of	F?

(e) What	is	the	standard	deviation	of	F?

Now	that	these	five	questions	have	been	restated	concisely	in	terms	of	probability	distributions,	one	could	attempt	to
answer	the	five	questions	using	the	tools	of	Chapters	2	and	3.	Notice	that	each	of	these	five	questions	pertains	to	the
random	variable	F.	Furthermore,	from	the	formula	above	for	F,	we	see	that	that	F	is	a	relatively	simple	function	of	the
two	random	variables	PR	and	D.	However,	it	turns	out	that	when	random	variables	are	combined,	either	by	addition,
multiplication,	or	some	more	complicated	operation,	the	new	random	variable	rarely	has	a	convenient	form	for	which
there	are	convenient	formulas.	(An	exception	to	this	dictum	is	the	case	of	the	sum	of	jointly	Normally	distributed
random	variables.)	Almost	all	other	instances	where	random	variables	are	combined	are	very	complex	to	analyze;	and
there	are	seldom	formulas	for
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the	mean,	the	standard	deviation,	for	the	probability	density	function,	or	for	the	cumulative	distribution	function	of	the
resulting	random	variable.

In	light	of	the	preceding	remarks,	there	are	no	formulas	or	tables	that	will	allow	us	to	answer	the	five	questions	posed
above	about	the	random	variable	F.	However,	as	we	shall	soon	see,	a	computer	simulation	model	can	be	used	to
effectively	gain	all	of	the	information	we	need	about	the	distribution	of	the	random	variable	F,	and	so	enable	us	to
make	an	informed	and	optimal	strategy	decision	about	which	port	to	use	to	sell	the	daily	catch	of	codfish.

5.3
A	Simulation	Model	of	the	Conley	Fisheries	Problem

Suppose	for	the	moment	that	Clint	Conley	is	a	very	wealthy	individual,	who	does	not	need	to	earn	any	money,	and	who
is	simply	curious	to	know	the	answers	to	the	five	questions	posed	above	for	the	pure	intellectual	pleasure	it	would	give
him!	With	all	of	his	time	and	money,	Clint	could	afford	to	perform	the	following	experiment.	For	each	of	the	next	200
weekdays,	Clint	could	send	the	boat	out	to	fish	for	its	catch	and	then	bring	the	boat	to	the	port	in	Rockport	at	the	end	of
the	day	to	sell	the	catch.	He	could	record	the	daily	earnings	from	this	strategy	each	day	and,	in	so	doing,	would	obtain
sample	data	of	200	observed	values	of	the	random	variable	F.	Clint	could	then	use	the	methodology	of	Chapter	4	to
answer	questions	about	the	probability	distribution	of	F	based	on	sample	data	to	obtain	approximate	answers	to	the	five
questions	posed	earlier.

Of	course,	Clint	Conley	is	not	a	very	wealthy	individual,	and	he	does	need	to	earn	money,	and	so	he	cannot	afford	to
spend	the	time	and	money	to	collect	a	data	set	of	200	values	of	daily	earnings	from	the	Rockport	strategy.	We	now	will
show	how	to	construct	an	elementary	simulation	model	on	a	computer,	which	can	be	used	to	answer	the	five	questions
posed	by	Clint.

The	central	notion	behind	most	computer	models	is	to	somehow	re-create	the	events	on	the	computer	which	one	is
interested	in	studying.	For	example,	in	economic	modeling,	one	builds	a	computer	model	of	the	national	economy	to
see	how	various	prices	and	quantities	will	move	over	time.	In	military	modeling,	one	constructs	a	''war	game"	model	to
study	the	effectiveness	of	new	weapons	or	military	tactics,	without	having	to	go	to	war	to	test	these	weapons	and/or
tactics.	In	weather	or	climate	forecasting,	one	constructs	an	atmospheric	model	to	see	how	storms	and	frontal	systems
will	move	over	time	in	order	to	predict	the	weather	with	greater	accuracy.	Of	course,	these	three	examples	are
obviously	very	complex	models	involving	sophisticated	economic	principles,	or	sophisticated	military	interactions,	or
sophisticated	concepts	about	the	physics	of	weather	systems.

In	the	Conley	Fisheries	problem,	one	can	also	build	a	computer	model	that	will	create	the	events	on	the	computer
which	one	is	interested	in	studying.	For	this	particular	problem,	the	events	of	interest	are	the	price	of	codfish	and	the
demand	for	codfish	that	Conley	Fisheries	would	face	in	Rockport	over	a	200	day	period.	For	the	sake	of	discussion,	let
us	reduce	the	length	of	the	period	from	200	days	to	20	days,	as	this	will	suffice	for	pedagogical	purposes.

As	it	turns	out,	the	Conley	Fisheries	problem	is	a	fairly	elementary	problem	to	model.	One	can	start	by	building	the
blank	table	shown	in	Table	5.3.	This	table	has	a	list	of	days	(numbered	1	through	20)	in	the	first	column,	followed	by
blanks	in	the	remaining	columns.	Our	first	task	will	be	to	fill	in	the	second	column	of	the	table	by
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modeling	the	demand	for	codfish	faced	by	Conley	Fisheries.	Recall	that	this	demand	obeys	a	discrete	probability
distribution	and	is	given	in	Table	5.1.	Thus,	we	would	like	to	fill	in	all	of	the	entries	of	the	column	''Demand	in
Rockport"	with	numbers	that	obey	the	discrete	distribution	for	demand	of	Table	5.1.	Put	a	slightly	different	way,	we
would	like	to	fill	in	all	of	the	entries	of	the	column	"Demand	in	Rockport"	with	numbers	drawn	from	the	discrete
probability	distribution	of	Table	5.1.

TABLE	5.3	Computer	worksheet	for	a	simulation	of	Conley	Fisheries.

Day
Demand	in	Rockport

(lbs.)
Quantity	of	Codfish	Sold

(lbs.)
Price	of	Codfish	in	Rockport

($/lb.)
Daily	Earnings	in	Rockport

($)
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Once	we	have	filled	in	the	entries	of	the	demand	column,	it	is	then	easy	to	fill	in	the	entries	of	the	next	column	labeled 
"Quantity	of	Codfish	Sold."	Because	the	Conley	Fisheries	boat	always	has	a	daily	catch	of	3,500	lbs.	of	codfish,	the 
quantity	sold	will	be	either	3,500	or	the	"Demand	in	Rockport"	quantity,	whichever	of	the	two	is	smaller.	(For	example, 
if	the	demand	in	Rockport	is	5,000,	then	the	quantity	sold	will	be	3,500.	If	the	demand	is	Rockport	is	2,000,	then	the 
quantity	sold	will	be	2,000.)

The	fourth	column	of	the	table	is	labeled	"Price	of	Codfish	in	Rockport."	We	would	like	to	fill	in	this	column	of	the 
table	by	modeling	the	price	of	codfish	in	Rockport.	Recall	that	the	price	of	codfish	obeys	a	Normal	distribution	with 
mean	µ	=	$3.65	and	standard	deviation	s	=	$0.20.	Thus,	we	would	like	to	fill	in	the	all	of	the	entries	of	the	column
"Price	of	Codfish	in	Rockport"	with	numbers	that	obey	a	Normal	distribution	with	mean	µ	=	$3.65	and	standard 
deviation	s	=	$0.20.	Put	a	slightly	different	way,	we	would	like	to	fill	in	all	of	the	entries	of	the	fourth	column	with 
numbers	drawn	from	a	Normal	distribution	with	mean	µ	=	3.65	and	standard	deviation	s	=	0.20.

The	fifth	column	of	Table	5.3	will	contain	the	daily	earnings	in	Rockport	for	each	of	the	numbered	days.	This	quantity 
is	elementary	to	compute	given	the	entries	in	the	other	columns.	It	is:

Daily	Earnings	=	(Quantity	of	Codfish	Sold)	×	(Price	of	Cod) -	$10,000.

That	is,	the	daily	earnings	for	each	of	the	days	is	simply	the	price	times	the	quantity,	minus	the	daily	operating	cost	of
$10,000.	Put	in	a	more	convenient	light,	for	each	row	of	the	table,	the	entry	in	the	fifth	column	is	computed	by 
multiplying	the	corresponding	entries	in	the	third	and	fourth	columns	and	then	subtracting	$10,000.
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Summarizing	so	far,	we	would	like	to	fill	in	the	entries	of	Table	5.3	for	each	of	the	20	rows	of	days.	If	we	can
accomplish	this,	then	the	last	column	of	Table	5.3	will	contain	a	sample	of	computer-generated,	i.e.,	simulated,	values
of	the	daily	earnings	in	Rockport.	The	sample	of	20	simulated	daily	earnings	values	can	then	be	used	to	answer	the	five
questions	posed	about	the	random	variable	F,	using	the	methods	of	statistical	sampling	that	were	developed	in	Chapter
4.

In	order	to	simulate	the	events	of	20	days	of	selling	the	codfish	in	Rockport,	we	will	need	to	fill	in	all	of	the	entries	of
the	column	''Demand	in	Rockport"	with	numbers	drawn	from	the	discrete	probability	distribution	of	Table	5.1.	We	will
also	need	to	fill	in	all	of	the	entries	of	the	column	"Price	of	Codfish	in	Rockport"	with	numbers	drawn	from	a	Normal
distribution	with	mean	µ	=	3.65	and	standard	deviation	s	=	0.20.	Once	we	are	able	to	do	this,	the	computation	of	all	of
the	other	numbers	in	the	table	is	extremely	simple.

There	are	two	critical	steps	in	filling	in	the	entries	of	Table	5.3	that	are	as	yet	unclear.	The	first	is	to	somehow	generate
a	sequence	of	numbers	that	are	drawn	from	and	hence	obey	the	discrete	distribution	of	Table	5.1.	These	numbers	will
be	used	to	fill	in	the	"Demand	in	Rockport"	column	of	the	table.	The	second	step	is	to	somehow	generate	a	sequence	of
numbers	that	are	drawn	from	and	hence	obey	a	Normal	distribution	with	mean	µ	=	3.65	and	standard	deviation	s	=
0.20.	These	numbers	will	be	used	to	fill	in	the	"Price	of	Codfish	in	Rockport"	column	of	the	table.	Once	we	have	filled
in	all	of	the	entries	of	these	two	columns,	the	computations	of	all	other	numbers	in	the	table	can	be	accomplished	with
ease.

Therefore,	the	critical	issue	in	creating	the	simulation	model	is	to	be	able	to	generate	a	sequence	of	numbers	that	are
drawn	from	a	given	probability	distribution.	To	understand	how	to	do	this,	one	needs	a	computer	that	can	generate
random	numbers.	This	is	discussed	in	the	next	section.

5.4
Random	Number	Generators

A	random	number	generator	is	any	means	of	automatically	generating	a	sequence	of	different	numbers	each	of	which	is
independent	of	the	other,	and	each	of	which	obeys	the	uniform	distribution	on	the	interval	from	0.0	to	1.0.

Most	computer	software	packages	that	do	any	kind	of	scientific	computation	have	a	mathematical	function
corresponding	to	a	random	number	generator.	In	fact,	most	hand-held	scientific	calculators	also	have	a	random	number
generator	function.	Every	time	the	user	presses	the	button	for	the	random	number	generator	on	a	hand-held	scientific
calculator,	the	calculator	creates	a	different	number	and	displays	this	number	on	the	screen;	and	each	of	these	numbers
is	drawn	according	to	a	uniform	distribution	on	the	interval	from	0.0	to	1.0.

The	Excel®	spreadsheet	software	also	has	a	random	number	generator.	This	random	number	generator	can	be	used	to
create	a	random	number	between	0.0	and	1.0	in	any	cell	by	entering	"=RAND()"	in	the	desired	cell.	Every	time	the
function	RAND()	is	called,	the	software	will	return	a	different	number	(whose	value	is	always	between	0.0	and	1.0);
and	this	number	will	be	drawn	from	a	uniform	distribution	between	0.0	and	1.0.	For	example,	suppose	one	were	to	type
"=RAND()"	into	the	first	row	of	column	"A"	of	an	Excel®	spreadsheet.	Then	the	corresponding	spreadsheet	might	look
like	that	shown	in	Figure	5.1.

FIGURE	5.1	Spreadsheet	illustration	of	a	random	number	generator.



Let	X	denote	the	random	variable	that	is	the	value	that	will	be	returned	by	a	call	to	a	random	number	generator.	Then	X
will	obey	a	uniform	distribution	on	the	interval	from	0.0	to	1.0.	Here	are	some	consequences	of	this	fact:
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P(X	£	0.5)	=	0.5,

P(X	³	0.5)	=	0.5,

P(0.2	£	X	£	0.9)	=	0.7.

In	fact,	for	any	two	numbers	a	and	b	for	which	0	£	a	£	b	£	1,	then:

P(a	£	X	£	b)	=	b	a.

Stated	in	plain	English,	this	says	that	for	any	interval	of	numbers	between	zero	and	one,	the	probability	that	X	will	lie
in	this	interval	is	equal	to	the	width	of	the	interval.	This	is	a	very	important	property	of	the	uniform	distribution	on	the
interval	from	0.0	to	1.0,	which	we	will	use	shortly	to	great	advantage.

(One	might	ask,	''How	does	a	computer	typically	generate	a	random	number	that	obeys	a	uniform	distribution	between
0.0	and	1.0?"	The	answer	to	this	question	is	rather	technical,	but	usually	random	numbers	are	generated	by	means	of
examining	the	digits	that	are	cut	off	when	two	very	large	numbers	are	multiplied	together	and	placing	these	digits	to	the
right	of	the	decimal	place.	The	extra	digits	that	the	computer	cannot	store	are	in	some	sense	random	and	are	used	to
form	the	sequence	of	random	numbers.)

(Actually,	on	an	even	more	technical	note,	the	random	number	generators	that	are	programmed	into	computer	software
are	more	correctly	called	"pseudo-random	number	generators."	This	is	because	a	computer	scientist	or	other
mathematically	trained	professional	could	in	fact	predict	the	sequence	of	numbers	produced	by	the	software	if	he/she
had	a	sophisticated	knowledge	of	the	way	the	number	generator's	software	program	is	designed	to	operate.	This	is	a
minor	technical	point	that	is	of	no	consequence	when	using	such	number	generators,	and	so	it	suffices	to	think	of	such
number	generators	as	actual	random	number	generators.)
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We	next	address	how	we	can	use	a	random	number	generator	to	create	numbers	that	obey	a	discrete	probability
distribution.

5.5
Creating	Numbers	That	Obey	a	Discrete	Probability	Distribution

Returning	to	the	Conley	Fisheries	problem,	recall	that	our	next	task	is	to	generate	a	sequence	of	demand	values	for
each	of	the	20	days	being	simulated.	Recall	that	the	demand	values	must	obey	the	discrete	probability	distribution	of
Table	5.1.

According	to	Table	5.1,	the	probability	that	the	demand	will	be	0	lbs.	is	0.02.	Also,	the	probability	that	the	demand	is
1,000	lbs.	is	0.03,	etc.	Now	consider	the	following	rule	for	creating	a	sequence	of	demands	that	will	obey	this
distribution.	First,	make	a	call	to	a	random	number	generator.	The	output	of	this	call	will	be	some	value	x,	and	recall
that	x	will	be	an	observed	value	from	a	uniform	distribution	on	the	interval	from	0.0	to	1.0.	Suppose	that	we	create	a
demand	value	of	d	=	0	whenever	x	lies	between	0.0	and	0.02.	Then	because	x	has	been	drawn	from	a	uniform
distribution	on	the	interval	from	0.0	to	1.0,	the	likelihood	that	x	will	lie	between	0.0	and	0.02	will	be	precisely	0.02;
and	so	the	likelihood	that	d	is	equal	to	0	will	be	precisely	0.02.	This	is	exactly	what	we	want.	We	can	develop	a	similar
rule	in	order	to	decide	when	to	create	a	demand	value	of	d	=	1,000	as	follows:	Create	a	demand	value	of	d	=	1,000
whenever	x	lies	between	0.02	and	0.05.	Note	that	because	x	has	been	drawn	from	a	uniform	distribution	on	the	interval
from	0.0	to	1.0,	the	likelihood	that	x	will	lie	between	0.02	and	0.05	will	be	precisely	0.03	(which	is	the	width	of	the
interval,	i.e.,	0.03	=	0.05	0.02),	which	is	exactly	what	we	want.	Similarly,	we	can	develop	a	rule	in	order	to	decide
when	to	create	a	demand	value	of	d	=	2,000	as	follows:	Create	a	demand	value	of	d	=	2,000	whenever	x	lies	between
0.05	and	0.10.	Note	once	again	that	because	x	has	been	drawn	from	a	uniform	distribution	on	the	interval	from	0.0	to
1.0,	the	likelihood	that	x	will	lie	between	0.05	and	0.10	will	be	precisely	0.05	(which	is	the	width	of	the	interval,	i.e.,
0.05	=	0.10	0.05),	which	is	also	exactly	what	we	want.	If	we	continue	this	process	for	all	of	the	seven	possible	demand
values	of	the	probability	distribution	of	demand,	we	can	summarize	the	method	in	Table	5.4.

TABLE	5.4	Interval	rule	for	creating	daily	demand	in	Rockport	faced	by
Conley	Fisheries.

Interval Demand	Value	Created	(lbs.	of	codfish)
0.00	0.02 0
0.02	0.05 1,000
0.05	0.10 2,000
0.10	0.18 3,000
0.18	0.51 4,000
0.51	0.80 5,000
0.80	1.00 6,000

Table	5.4	summarizes	the	interval	rule	for	creating	a	sequence	of	demand	values	that	obey	the	probability	distribution
of	demand.	For	each	of	the	20	days	under	consideration,	call	the	random	number	generator	once	in	order	to	obtain	a
value	x	that	is	drawn	from	a	uniform	distribution	on	the	interval	from	0.0	to	1.0.	Next,	find	which	of	the	seven	intervals
of	Table	5.4	contains	the	value	x.	Last	of	all,	use	that	interval	to	create	the	demand	value	d	in	the	second	column	of	the
table.

For	example,	suppose	the	random	number	generator	has	been	used	to	generate	20	random	values,	and	these	values	have
been	entered	into	the	second	column
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of	Table	5.5.	Consider	the	first	random	number	in	Table	5.5,	which	is	0.3352.	As	this	number	lies	between	0.18	and
0.51,	we	create	a	demand	value	on	day	1	of	4,000	lbs.	using	the	interval	rule	of	Table	5.4.	Next,	consider	the	second
random	number	in	Table	5.5,	which	is	0.4015.	As	this	number	lies	between	0.18	and	0.51,	we	also	create	a	demand
value	on	day	2	of	4,000	lbs.	using	the	interval	rule	of	Table	5.4.	Next,	consider	the	third	random	number	in	Table	5.5,
which	is	0.1446.	As	this	number	lies	between	0.10	and	0.18,	we	create	a	demand	value	on	day	3	of	3,000	lbs.	using	the
interval	rule	of	Table	5.4.	If	we	continue	this	process	for	all	of	the	20	days	portrayed	in	Table	5.5,	we	will	create	the
demand	values	as	shown	in	the	third	column	of	Table	5.5.

TABLE	5.5	Worksheet	for	generating	demand	for	codfish	in	Rockport.
Day Random	Number Demand	in	Rockport	(lbs.	of	codfish)
1 0.3352 4,000
2 0.4015 4,000
3 0.1446 3,000
4 0.4323 4,000
5 0.0358 1,000
6 0.4999 4,000
7 0.8808 6,000
8 0.9013 6,000
9 0.4602 4,000
10 0.3489 4,000
11 0.4212 4,000
12 0.7267 5,000
13 0.9421 6,000
14 0.7059 5,000
15 0.1024 3,000
16 0.2478 4,000
17 0.5940 5,000
18 0.4459 4,000
19 0.0511 2,000
20 0.6618 5,000

Notice	that	if	we	generate	the	demand	values	according	to	the	interval	rule	of	Table	5.4,	then	the	demand	values	will
indeed	obey	the	probability	distribution	for	demand	as	specified	in	Table	5.1.	To	see	why	this	is	so,	consider	any
particular	value	of	demand,	such	as	demand	equal	to	5,000	lbs.	A	demand	of	5,000	lbs.	will	be	generated	for	a
particular	day	whenever	the	random	number	generated	for	that	day	lies	in	the	interval	between	0.51	and	0.80.	Because
this	interval	has	a	width	of	0.29	(0.80	0.51	=	0.29),	and	because	x	was	drawn	from	a	uniform	distribution	between	0.0
and	1.0,	the	likelihood	that	any	given	x	will	lie	in	this	particular	interval	is	precisely	0.29.	This	argument	holds	for	all
of	the	other	six	values	of	demand,	because	the	width	of	the	assignment	intervals	of	Table	5.4	are	exactly	the	same	as
the	probability	values	of	Table	5.1.	In	fact,	that	is	why	they	were	constructed	this	particular	way.	For	example,
according	to	Table	5.1,	the	probability	that	demand	for	codfish	will	be	4,000	lbs.	is	0.33.	In	Table	5.4,	the	width	of	the
random	number	assignment	interval	is	0.51	0.18	=	0.33.	Therefore,	the	likelihood	in	the	simulation	model	that	the
model	will	create	a	demand	of	4,000	lbs.	is	0.33.

Notice	how	the	entries	in	Table	5.4	are	computed.	One	simply	divides	up	the	numbers	between	0.0	and	1.0	into	non-
overlapping	intervals	whose	widths	correspond	to	the	probability	distribution	function	of	interest.	The	general	method
for	generating	a	sequence	of	numbers	that	obey	a	given	discrete	probability	distribution	is	summarized	as	follows:
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General	Method	for	Creating	Sample	Data	drawn	from	a	Discrete	Probability
Distribution

1.	Divide	up	the	number	line	between	0.0	and	1.0	into	non-overlapping	intervals,	one
interval	for	each	of	the	possible	values	of	the	discrete	distribution,	and	such	that	the	width
of	each	interval	corresponds	to	the	probability	for	each	value.

2.	Use	a	random	number	generator	to	generate	a	sequence	of	random	numbers	that	obey
the	uniform	distribution	between	0.0	and	1.0.

3.	For	each	random	number	generated	in	the	sequence,	assign	the	value	corresponding	to
the	interval	that	the	random	number	lies	in.

There	is	one	minor	technical	point	that	needs	to	be	mentioned	about	the	endpoints	of	the	assignment	intervals	of	Table
5.4.	According	to	Table	5.4,	it	is	not	clear	what	demand	value	should	be	created	if	the	value	of	the	random	number	x	is
exactly	0.51	(either	d	=	4,000	or	d	=	5,000),	or	if	x	is	exactly	any	of	the	other	endpoint	values	(0.02,	0.05,	0.10,	0.18,
0.51,	or	0.80).	Because	the	number	x	was	drawn	from	a	continuous	uniform	distribution,	the	probability	that	it	will
have	a	value	of	precisely	0.51	is	zero,	and	so	this	is	extremely	unlikely	to	occur.	But	just	in	case,	we	can	be	more	exact
in	the	rule	of	Table	5.4	to	specify	that	when	the	number	is	exactly	one	of	the	endpoint	values,	then	choose	the	smaller
of	the	possible	demand	values.	Thus,	for	example,	if	x	=	0.51,	one	would	choose	d	=	4,000.

The	final	comment	of	this	section	concerns	computer	software	and	computer	implementation	of	the	method.	It	should
be	obvious	that	it	is	possible	by	hand	to	implement	this	method	for	any	discrete	probability	distribution,	as	has	been
done,	for	example,	to	create	the	demand	values	in	Table	5.5	for	the	Conley	Fisheries	problem.	It	should	also	be	obvious
that	it	is	fairly	straightforward	to	program	a	spreadsheet	to	automatically	create	a	sequence	of	numbers	that	obey	a
given	discrete	probability	distribution,	using	commands	such	as	RAND(),	etc.	In	addition,	there	are	special	simulation
software	programs	that	will	do	all	of	this	automatically,	where	the	user	only	needs	to	specify	the	discrete	probability
distribution,	and	the	software	program	does	all	of	the	other	work.	This	will	be	discussed	further	in	Section	5.10.

We	next	address	how	we	can	use	a	random	number	generator	to	create	numbers	that	obey	a	continuous	probability
distribution.

5.6
Creating	Numbers	That	Obey	a	Continuous	Probability	Distribution

Again	returning	to	the	problem	of	Conley	Fisheries,	the	next	task	is	to	create	a	sequence	of	daily	prices	of	codfish	at
the	port	in	Rockport,	one	price	for	each	of	the	20	days	under	consideration,	in	such	a	way	that	the	prices	generated	are
observed	values	that	have	been	drawn	from	the	probability	distribution	of	the	daily	price	of	codfish	in	Rockport.	Recall
that	the	daily	price	of	codfish	in	Rockport	obeys	a	Normal	distribution	with	mean	µ	=	$3.65/lb.	and	with	a	standard
deviation	s	=	$0.20/lb.	Thus	the	price	of	codfish	obeys	a	continuous	probability	distribution,	and	so	unfortunately	the
method	of	the	previous	section,	which	was	developed	for	discrete	random	variables,	cannot	be	directly	applied.	For	the
case	when	it	is	necessary	to	create
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numbers	that	are	drawn	from	a	continuous	probability	distribution,	there	is	a	very	simple	method	that	is	described	as
follows	in	generality.

Suppose	that	Y	is	any	random	variable	that	obeys	a	continuous	probability	distribution	whose	cumulative	distribution
function	(cdf)	is	F(y),	where	recall	that

F(y)	=	P(Y	£	y),

and	that	it	is	necessary	as	part	of	a	simulation	model	to	create	a	sequence	of	numbers	that	obeys	this	particular
continuous	probability	distribution.	There	is	a	graphical	procedure	for	creating	such	a	sequence	of	numbers,	which	is
quite	simple	and	is	stated	as	follows:

Graphical	Method	for	Creating	Sample	Data	drawn	from	a	Continuous	Probability
Distribution

1.	Use	a	random	number	generator	to	generate	a	sequence	of	random	numbers	that	obey
the	uniform	distribution	between	0.0	and	1.0.

2.	For	each	random	number	x	generated	in	the	sequence	of	Step	1,	place	that	number	on
the	vertical	axis	of	the	graph	of	the	cumulative	distribution	function	(cdf)	F(y).	Then	find
the	point	y	on	the	horizontal	axis	whose	cdf	value	F(y)	equals	x.

We	now	illustrate	this	graphical	method.	Suppose	Y	is	a	continuous	random	variable	whose	probability	density	function
(pdf)	f(y)	is	given	in	Figure	5.2,	and	whose	cumulative	distribution	function	(cdf)	F(y)	is	given	in	Figure	5.3.	Suppose
that	we	are	interested	in	creating	a	sample	of	ten	values	drawn	from	this	distribution.	First,	in	Step	1,	we	generate	a
sequence	of	ten	random	numbers	using	a	random	number	generator,	whose	values	might	look	like	those	in	the	first
column	of	Table	5.6.

FIGURE	5.2	Probability	density	function	f(y)	of	the	random	variable	Y.
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FIGURE	5.3	Cumulative	distribution	function	F(y)	of	the	random	variable	Y.

TABLE	5.6	A	sequence	of	ten	random	numbers.
Random	Number	(x) Value	of	y

0.8054
0.6423
0.8849
0.6970
0.2485
0.0793
0.7002
0.1491
0.4067
0.1658

In	order	to	create	the	sample	value	for	the	first	random	number,	which	is	x	=	0.8054,	we	place	that	value	on	the	vertical
axis	of	the	cumulative	distribution	function	F(y)	of	Figure	5.3	and	determine	the	corresponding	y	value	on	the
horizontal	axis	from	the	graph.	This	is	illustrated	in	Figure	5.4.	For	x	=	0.8054,	the	corresponding	y	value	is
(approximately)	y	=	6.75.	Proceeding	in	this	manner	for	all	of	the	ten	different	random	number	values	x,	one	obtains
the	ten	values	of	y	depicted	in	Table	5.7.	These	ten	values	of	y	then	constitute	a	sample	of	observed	values	drawn	from
the	probability	distribution	of	Y.

FIGURE	5.4	Illustration	of	the	graphical	method	for	creating	observed	values	of	a	continuous	random
variable	with	cumulative	distribution	function	F(y).



TABLE	5.7	Values	of	x	and	y.
Random	Number	(x) Value	of	y

0.8054 6.75
0.6423 6.04
0.8849 7.16
0.6970 6.24
0.2485 4.51
0.0793 3.58
0.7002 6.28
0.1491 4.02
0.4067 5.15
0.1658 4.12

As	just	shown,	it	is	quite	easy	to	perform	the	necessary	steps	of	the	graphical	method.	However,	it	may	not	be	obvious
why	this	method	creates	a	sequence	of	values	of	y	that	are	in	fact	drawn	from	the	probability	distribution	of	Y.	We	now
give	some	intuition	as	to	why	the	method	accomplishes	this.

Consider	the	probability	density	function	(pdf)	f(y)	of	Y	shown	in	Figure	5.2	and	its	associated	cumulative	distribution
function	(cdf)	F(y)	shown	in	Figure	5.3.	Remember	that	the	cdf	F(y)	is	the	area	under	the	curve	of	the	pdf	f(y).
Therefore,	the	slope	of	F(y)	will	be	steeper	for	those	values	of	y	where	the	pdf	f(y)	is	higher,	and
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the	slope	of	F(y)	will	be	flatter	for	those	values	of	y	where	the	pdf	f(y)	is	lower.	For	example,	at	y	=	5.5,	f(y)	is	quite
large,	and	the	slope	of	F(y)	is	quite	steep.	Also,	for	example,	at	y	=	3.0,	f(y)	is	quite	small,	and	the	slope	of	F(y)	is	quite
flat.

Now	consider	the	application	of	the	graphical	method	for	creating	values	of	y.	Note	that	by	way	of	the	construction,	the
method	will	produce	a	greater	concentration	of	values	of	y	where	the	slope	of	the	cdf	F(y)	is	steeper.	Likewise,	the
method	will	produce	a	lesser	concentration	of	values	of	y	where	the	slope	of	the	cdf	F(y)	is	flatter.	Therefore,	using	the
observation	in	the	paragraph	above,	the	method	will	produce	a	greater	concentration	of	values	of	y	where	the	pdf	f(y)	is
higher	and	will	produce	a	lesser	concentration	of	values	of	y	where	the	pdf	f(y)	is	lower.	As	it	turns	out,	this
correspondence	is	precise,	and	so	indeed	the	method	will	produce	values	of	y	that	are	exactly	in	accord	with	the
underlying	probability	distribution	of	Y.

Although	the	method	is	best	illustrated	by	considering	a	graph	of	the	cdf	F(y),	it	is	not	necessary	to	have	a	literal	graph
of	the	cumulative	distribution	function	in	order	to	use	the	method.	In	fact,	another	way	to	state	the	method	without	the
use	of	graphs	is	as	follows:
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General	Method	for	Creating	Sample	Data	Drawn	from	a	Continuous	Probability
Distribution

1.	Use	a	random	number	generator	to	generate	a	sequence	of	random	numbers	that	obey
the	uniform	distribution	between	0.0	and	1.0.

2.	For	each	random	number	x	generated	in	the	sequence	of	Step	1,	compute	that	value	of
y	whose	cumulative	distribution	function	value	is	equal	to	x.	That	is,	given	x,	solve	the
equation:

F(y)	=	P(Y	£	y)	=	x

to	obtain	the	value	y.	Then	assign	y	as	the	value	created.

This	more	general	form	of	the	method	is	now	illustrated	on	the	Conley	Fisheries	problem,	where	the	task	at	hand	is	to
create	a	sequence	of	prices	for	codfish	at	the	port	in	Rockport,	one	price	for	each	of	the	20	days	under	consideration,	in
such	a	way	that	the	created	prices	are	samples	drawn	from	the	probability	distribution	of	the	daily	price	of	codfish	in
Rockport.	Recall	that	the	daily	price	of	codfish	in	Rockport	obeys	a	Normal	distribution	with	mean	µ	=	$3.65/lb.	and
with	a	standard	deviation	s	=	$0.20/lb.

The	first	step	is	to	use	a	random	number	generator	to	generate	20	random	numbers.	Suppose	this	has	been	done,	and
the	20	random	numbers	are	as	shown	in	the	second	column	of	Table	5.8.

TABLE	5.8	Worksheet	for	generating	the	price	of	codfish	in	Rockport.
Day Random	Number Price	of	Codfish	in	Rockport	($/lb.)
1 0.3236 3.5585
2 0.1355 3.4299
3 0.5192 3.6596
4 0.9726 4.0342
5 0.0565 3.3330
6 0.2070 3.4866
7 0.2481 3.5139
8 0.8017 3.8196
9 0.2644 3.5240
10 0.2851 3.5365
11 0.7192 3.7661
12 0.7246 3.7693
13 0.9921 4.1330
14 0.5227 3.6614
15 0.0553 3.3309
16 0.5915 3.6963
17 0.0893 3.3810
18 0.3136 3.5529
19 0.0701 3.3550
20 0.8309 3.8416

The	second	step	is	then	to	compute	that	value	of	y	for	which	the	equation

F(y)	=	P(Y	£	y)	=	x
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is	solved,	for	each	of	the	20	different	random	number	values	x	in	Table	5.8,	and	where	F(y)	is	the	cdf	for	a	Normal
distribution	with	mean	µ	=	$3.65/lb.	and	with	standard	deviation	s	=	$0.20/lb.	Consider	the	first	random	number	value,
which	is	x	=	0.3236.	Then	the	corresponding	value	of	y	is	that	value	of	y	which	solves:

P(Y	£	y)	=	0.3236,

and	where	Y	obeys	a	Normal	distribution	with	mean	µ	=	3.65	and	with	a	standard	deviation	s	=	0.20.	But	then,	if	we
define

and	recall	that	Z	is	a	standard	Normal	random	variable,	then

P(Y	£	y)	=	0.3236

is	equivalent	to

Solving	this	equation	via	a	standard	Normal	table,	one	obtains	that

and	substituting	the	values	of	µ	=	$3.65/lb.	and	s	=	$0.20/lb.	in	this	expression	and	solving	for	y	yields

y	=	µ	0.4575s	=	3.65	0.4575	×	0.20	=	$3.5585/lb.

Therefore,	with	y	=	$3.5585,	it	is	true	that

F(y)	=	P(Y	£	y)	=	0.3236,

and	so	we	create	a	price	of	$3.5585/lb.	in	the	first	row	of	the	third	column	of	Table	5.8.	Continuing	in	precisely	this
manner	for	all	of	the	other	19	random	number	values,	we	create	the	remaining	entries	in	the	table.

The	final	comment	of	this	section	concerns	computer	software	and	computer	implementation	of	the	general	method.	It
should	be	obvious	that	it	is	possible	by	hand	to	implement	either	the	graphical	method	or	the	more	general	method	for
any	continuous	probability	distribution,	so	long	as	it	is	possible	to	work	with	the	cumulative	distribution	function	of	the
distribution	via	either	a	graph	or	a	table.	For	the	Conley	Fisheries	problem,	for	example,	the	method	is	implemented	by
using	the	table	for	the	Normal	distribution.	When	the	continuous	distribution	is	of	a	very	special	form,	such	as	a
Normal	distribution	or	a	uniform	distribution,	it	is	quite	easy	to	create	a	spreadsheet	that	will	do	all	of	the	necessary
computations	automatically.	When	the	continuous	distribution	is	other	than	the	Normal	or	a	uniform	distribution,	there
are	special	simulation	software	programs	that	will	do	all	of	the	computation	automatically,	where	the	user	only	needs	to
specify	the	general	parameters	of	the	continuous	distribution,	and	the	software	program	does	all	of	the	other	work.	This
will	be	discussed	further	in	Section	5.10
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5.7
Completing	the	Simulation	Model	of	Conley	Fisheries

We	can	now	complete	the	simulation	of	the	Conley	Fisheries	problem	by	combining	the	demand	values	of	Table	5.5 
and	the	price	values	of	Table	5.8	to	complete	the	analysis.	This	is	shown	in	Table	5.9,	which	is	now	discussed	in	detail. 
Table	5.9	portrays	the	results	of	the	simulation	efforts	on	the	simulation	of	the	first	20	days	of	the	200-day	period.	The 
second	and	third	columns	of	Table	5.9	are	simply	the	simulated	values	of	demand	in	Rockport	(column	3)	based	on	the 
random	number	in	Column	2,	as	created	in	Table	5.5	and	simply	copied	over	to	Table	5.9.	The	fourth	column	of	Table 
5.9	is	the	quantity	of	codfish	sold,	which,	as	one	may	recall,	is	the	minimum	of	the	demand	(Column	3)	and	the	daily 
catch	of	3,500	lbs.	The	fifth	and	sixth	columns	of	Table	5.9	are	simply	the	simulated	values	of	the	price	of	codfish	in 
Rockport	(Column	6)	based	on	the	random	number	in	Column	5,	as	created	in	Table	5.8	and	simply	copied	over	to 
Table	5.9.	Last	of	all,	Column	7	of	Table	5.9	is	the	daily	earnings	in	Rockport,	which	is	computed	by	the	formula:

Daily	Earnings	=	(Quantity	of	Codfish	Sold)	(Price	of	Cod) -	$10,000.

Thus,	for	example,	for	day	1,	the	daily	earnings	is:

Daily	Earnings	=	(3,500	lbs.)	($3.5585/lb.)	- $10,000	=	$2,455. 

TABLE	5.9	Completed	worksheet	for	the	Conley	Fisheries	problem.
Day

Number
Random
Number

Demand	in
Rockport	(lbs.)

Quantity	of	Codfish
Sold	(lbs.)

Random
Number

Price	of	Codfish	in
Rockport	($/lb.)

Daily	Earnings	in
Rockport	($)

1 0.3352 4,000 3,500 0.3236 3.5585 $2,455
2 0.4015 4,000 3,500 0.1355 3.4299 $2,005
3 0.1446 3,000 3,000 0.5192 3.6596 $979
4 0.4323 4,000 3,500 0.9726 4.0342 $4,120
5 0.0358 1,000 1,000 0.0565 3.3330 ($6,667)
6 0.4999 4,000 3,500 0.2070 3.4866 $2,203
7 0.8808 6,000 3,500 0.2481 3.5139 $2,299
8 0.9013 6,000 3,500 0.8017 3.8196 $3,368
9 0.4602 4,000 3,500 0.2644 3.5240 $2,334
10 0.3489 4,000 3,500 0.2851 3.5365 $2,378
11 0.4212 4,000 3,500 0.7192 3.7661 $3,181
12 0.7267 5,000 3,500 0.7246 3.7693 $3,193
13 0.9421 6,000 3,500 0.9921 4.1330 $4,465
14 0.7059 5,000 3,500 0.5227 3.6614 $2,815
15 0.1024 3,000 3,000 0.0553 3.3309 ($7)
16 0.2478 4,000 3,500 0.5915 3.6963 $2,937
17 0.5940 5,000 3,500 0.0893 3.3810 $1,834
18 0.4459 4,000 3,500 0.3136 3.5529 $2,435
19 0.0511 2,000 2,000 0.0701 3.3550 ($3,290)
20 0.6618 5,000 3,500 0.8309 3.8416 $3,445

The	computations	are	repeated	in	a	similar	fashion	for	all	of	the	20	days	in	the	table.

The	important	numbers	in	Table	5.9	are	the	daily	earnings	numbers	in	the	last	column	of	the	table.	By	generating	the
daily	earnings	numbers	for	a	large	number	of	days,	it	should	be	possible	to	get	a	fairly	accurate	description	of	the
probability	distribution	of	the	daily	earnings	in	Rockport,	i.e.,	the	probability	distribution	of	the	random	variable	F.

Although	the	number	n	=	20	has	been	used	to	show	some	of	the	intermediary	detailed	work	in	the	simulation	of	the
Conley	Fisheries	problem,	there	is	no	reason	why	the	model	cannot	be	extended	to	run	for	n	=	200	simulated	days,	and
hence	simulate
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n	=	200	days	of	daily	earnings.	Indeed,	Table	5.10	shows	200	different	daily	earnings	numbers	generated	by	using	the	simulation	methodology	for
200	different	days.	Note	that	the	first	20	entries	in	Table	5.10	are	simply	the	daily	earnings	in	Rockport	of	the	first	20	days	of	the	simulation,	i.e.,
they	are	the	numbers	from	the	final	column	of	Table	5.9.

TABLE	5.10	Simulation	output	for	n	=	200	simulation	trials	of	the	Conley	Fisheries	model.
Day	Number Daily	Earnings	in	Rockport	($)

1 $2,455
2 $2,005
3 $979
4 $4,120
5 ($6,667)
6 $2,203
7 $2,299
8 $3,368
9 $2,334
10 $2,378
11 $3,181
12 $3,193
13 $4,465
14 $2,815
15 ($7)
16 $2,937
17 $1,834
18 $2,435
19 ($3,290)
20 $3,445
21 $2,076
22 $3,583
23 $2,169
24 $3,064
25 ($6,284)
26 $3,602
27 $4,406
28 $2,911
29 $2,389
30 $2,752
31 $2,163
32 $3,553
33 $3,315
34 $1,936
35 $3,013
36 $405
37 $2,443
38 $2,825
39 $1,818
40 ($1,808)
41 $3,104
42 $2,802
43 $556
44 $2,554
45 $2,792
46 $3,099
47 $2,465
48 $2,909
49 $2,386
50 $2,505
51 $2,870
52 $2,530
53 $4,289
54 $1,968
55 ($2,382)
56 $3,271
57 $2,457

58 $2,240
59 $2,658
60 $1,443
61 ($6,491)
62 $1,954
63 ($6,284)
64 $2,494
65 $3,649
66 $3,258
67 ($2,034)
68 $2,791
69 $2,856
70 $2,026
71 $2,677
72 $3,364



72 $3,364
73 $3,472
74 $1,873
75 $2,104
76 $2,586
77 $2,201
78 $1,825
79 $2,955
80 $1,469
81 $1,843
82 $3,936
83 $2,572
84 ($10,000)
85 $1,601
86 $4,238
87 $2,423
88 $1,072
89 $2,651
90 $1,823
91 $2,782
92 ($5,963)
93 $2,904
94 $3,972
95 $2,539
96 $1,530
97 $1,629
98 $2,610
99 $2,821
100 $2,067
101 $3,188
102 $2,907
103 $4,192
104 $2,792
105 $2,727
106 $1,930
107 $2,569
108 $2,858
109 $3,783
110 ($2,523)
111 ($2,290)
112 $4,229
113 $3,317
114 ($1,769)
115 $2,581
116 $2,361
117 ($10,000)
118 $919
119 $2,493
120 $3,973
121 $3,189
122 ($3,654)
123 $2,492
124 $2,843

125 ($3,020)
126 $2,725

127 $2,194
128 $1,883
129 $3,329
130 $2,372
131 $1,010
132 $3,161
133 $2,769
134 $3,184
135 $2,786
136 $3,233
137 $2,230
138 $3,338
139 $2,670
140 ($6,362)
141 $2,500
142 ($3,068)
143 $2,036
144 $4,030
145 $3,826
146 $3,527
147 $3,196
148 $3,573
149 $4,020
150 $3,012
151 ($3,039)
152 $1,822
153 $2,217



154 $3,068
155 ($224)
156 $3,662
157 $3,829
158 $1,628
159 ($10,000)
160 $2,254
161 $3,406
162 $441
163 ($3,159)
164 $3,243
165 $1,351
166 $3,649
167 $3,156
168 $2,104
169 $2,573
170 $2,011
171 $3,706
172 $2,017
173 ($2,860)
174 $2,247
175 $2,165
176 $4,134
177 $3,031
178 $2,345
179 $1,416
180 $3,025
181 $156
182 $2,737
183 $3,025
184 ($3,328
185 $2,163
186 ($2,383)
187 $1,641
188 $2,310
189 $2,980
190 $3,109
191 $3,246
192 $2,567
193 $3,340

194 $2,244
195 $3,219
196 $2,496
197 $2,011
198 $2,731
199 ($6,464)
200 $3,614
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5.8
Using	the	Sample	Data	for	Analysis

Table	5.10	contains	a	sample	of	n	=	200	observed	values	of	the	earnings	from	using	Rockport.	Fixing	some	notation,
let	xi	denote	the	daily	earnings	from	using	Rockport	for	day	number	i,	for	all	values	of	i	=	1,	.	.	.	,	200.	That	is,	x1	=
$2,455,	x2	=	$2,005,	.	.	.	,	x200	=	$3,614.	Then	each	xi	is	the	observed	value	of	the	random	variable	F	and	has	been	drawn
from	the	(unknown)	probability	distribution	of	the	random	variable	F.	In	fact,	the	array	of	values	x1,	x2,	.	.	.	,	x200
constitutes	a	fairly	large	sample	of	n	=	200	different	observed	values	of	the	random	variable	F.	Therefore,	we	can	use
this	sample	of	observed	values	to	estimate	the	answers	to	the	five	questions	posed	in	Section	5.1	and	Section	5.2,
which	we	rephrase	below	in	the	language	of	statistical	sampling:

(a)	What	is	the	shape	of	the	probability	density	function	of	F?

(b)	What	is	P	(F	>	$1,375)?

(c)	What	is	P	(F	<	$0)?

(d)	What	is	the	expected	value	of	F?

(e)	What	is	the	standard	deviation	of	F?

We	now	proceed	to	answer	these	five	questions.

Question	(a):

What	is	an	estimate	of	the	shape	the	probability	density	function	of	F?

Recall	from	Chapter	4	that	in	order	to	gain	intuition	about	the	shape	of	the	distribution	of	F,	it	is	useful	to	create	a
frequency	table	and	a	histogram	of	the	observed	sample	values	x1,	x2,	.	.	.	,	x200	of	Table	5.10.	Such	a	frequency	table	is
presented	in	Table	5.11.

TABLE	5.11	Frequency	table	of	the	200	observed	values	of	earnings	in
Rockport.

Interval	From Interval	To Number	in	the	Sample
($10,500) ($10,000) 3
($10,000) ($9,500) 0
($9,500) ($9,000) 0
($9,000) ($8,500) 0
($8,500) ($8,000) 0
($8,000) ($7,500) 0
($7,500) ($7,000) 0
($7,000) ($6,500) 1
($6,500) ($6,000) 5
($6,000) ($5,500) 1
($5,500) ($5,000) 0
($5,000) ($4,500) 0
($4,500) ($4,000) 0
($4,000) ($3,500) 1
($3,500) ($3,000) 5
($3,000) ($2,500) 2
($2,500) ($2,000) 4
($2,000) ($1,500) 2
($1,500) ($1,000) 0
($1,000) ($500) 0
($500) $0 2
$0 $500 3
$500 $1,000 3
$1,000 $1,500 6
$1,500 $2,000 17
$2,000 $2,500 43
$2,500 $3,000 41
$3,000 $3,500 35
$3,500 $4,000 16
$4,000 $4,500 10
$4,500 $5,000 0



A	histogram	of	the	values	of	Table	5.11	is	shown	in	Figure	5.5.	This	histogram	gives	a	nice	pictorial	view	of	the
distribution	of	the	observed	values	of	the	sample,	and	it	also	is	an	approximation	of	the	shape	of	the	probability	density
function	(pdf)	of	F.	We	see	from	the	histogram	in	Figure	5.5	that	the	values	of	F	are	mostly	clustered	in	the	range	$0
through	$4,500,	in	a	roughly	bell	shape	or	Normal	shape,	but	that	there	are	also	a	significant	number	of	other	values
scattered	below	$0,	whose	values	can	be	as	low	as	$10,000.	This	histogram	indicates	that	while	most	observed	values
of	earnings	from	Rockport	are	quite	high,	there	is	some	definite	risk	of	substantial	losses	from	using	Rockport.

FIGURE	5.5	Histogram	of	earnings	from	Rockport.

Question	(b):

What	is	an	estimate	of	P(F	>	$1,375)?

This	question	can	be	answered	by	using	the	counting	method	developed	in	Chapter	4.	Recall	from	Chapter	4	that	the
fraction	of	values	of	x1,	x2,	.	.	.	,	x200	in	Table	5.10	that	are	larger	than	$1,375	is	an	estimate	of	the	probability	p	for	which

p	=	P(F	>	$1,375).

If	we	count	the	number	of	values	of	x1,	x2,	.	.	.	,	x200	in	Table	5.10	that	are	larger	than	$1,375,	we	obtain	that	165	of	these
200	values	are	larger	than	$1,375.	Therefore,	an	estimate	of	p	=	P	(F	>	$1,375)	is:

We	therefore	estimate	that	there	is	an	83%	likelihood	that	the	earnings	in	Rockport	on	any	given	day	would	exceed	the
earnings	from	Gloucester.	This	supports	the	strategy	option	of	choosing	Rockport	over	Gloucester.
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Question	(c):

What	is	an	estimate	of	P(F	<	0)?

This	question	can	also	be	answered	by	using	the	counting	method	of	Chapter	4.	Recall	from	Chapter	4	that	the	fraction
of	values	of	x1,	x2,	.	.	.	,	x200	in	Table	5.10	that	are	less	than	$0	is	an	estimate	of	the	probability	p	for	which	p	=	P(F	<
$0).	If	we	count	the	number	of	values	of	x1,	x2,	.	.	.	,	x200	in	Table	5.10	that	are	less	than	$0,	we	obtain	that	26	of	these
200	values	are	less	than	$0.	Therefore,	an	estimate	of	p	=	P(F	<	$0)	is:

We	therefore	estimate	that	there	is	a	13%likelihood	that	Conley	Fisheries	would	lose	money	on	any	given	day,	if	they
chose	to	sell	their	catch	in	Rockport.	This	shows	that	the	risk	of	choosing	Rockport	is	not	too	large,	but	it	is	not
insubstantial	either.

Question	(d):

What	is	an	estimate	of	the	expected	value	of	F?

We	know	that	the	observed	sample	mean	 	of	this	sample	of	200	observed	values	is	a	good	estimate	of	the	actual
expected	value	µ	of	the	underlying	distribution	of	F,	especially	when	the	sample	size	is	large	(and	here,	the	sample	size
is	n	=	200,	which	is	quite	large).	Therefore,	the	observed	sample	mean	of	the	200	values	x1,	x2,	.	.	.	,	x200	in	Table	5.10
should	be	a	very	good	estimate	of	the	expected	value	µ	of	the	random	variable	F.	It	is	straightforward	to	obtain	the
sample	mean	 	for	the	sample	given	in	Table	5.10.	Its	value	is

Therefore	our	estimate	of	the	mean	of	the	random	variable	F	is	$1,768.38.	Notice	that	this	value	is	larger	than	$1,375, 
which	is	the	earnings	that	Conley	Fisheries	can	obtain	(with	certainty)	by	selling	its	fish	in	Gloucester.	Thus,	an 
estimate	of	the	expected	increase	in	revenues	from	selling	in	Rockport	is

$393.38/day	=	$1,768.38/day -	$1,375.00/day.

Question	(e):

What	is	an	estimate	of	the	standard	deviation	of	F?

Recall	from	the	statistical	sampling	methodology	of	Chapter	4	that	the	observed	sample	standard	deviation	s	is	a	good 
estimate	of	the	actual	standard	deviation	s	of	the	random	variable	F,	especially	when	the	sample	size	is	large.	It	is 
straightforward	to	obtain	the	observed	sample	standard	deviation	for	the	sample	given	in	Table	5.10,	as	follows:

Therefore
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and	our	estimate	of	the	standard	deviation	of	F	is	s	=	$2,672.59.	This	standard	deviation	is	rather	large,	which	confirms
Clint	Conley's	intuition	that	there	is	substantial	risk	involved	in	using	Rockport	as	the	port	at	which	to	sell	his	daily
catch.

An	additional	question	that	one	might	want	to	answer	is:	What	is	a	95%	confidence	interval	for	the	mean	of	the
distribution	of	daily	earnings	from	selling	the	catch	of	codfish	in	Rockport?	The	answer	to	this	question	is	provided	by
the	formula	in	Chapter	4	for	a	95%	confidence	interval	for	the	mean	of	a	distribution	when	n	is	large.	This	formula	is:

Substituting	the	values	of	 	=	$1,768.38,	s	=	$2,672.59,	and	n	=	200,	we	compute	the	95%	confidence	interval	for	the 
true	mean	of	the	distribution	of	daily	earnings	to	be

[$1,397.98,	$2,138.78].

Notice	that	this	interval	does	not	contain	the	value	$1,375.	Therefore,	at	the	95%	confidence	level,	we	can	conclude 
that	the	expected	daily	earnings	from	selling	the	catch	of	codfish	in	Rockport	is	higher	than	from	selling	the	catch	of 
codfish	in	Gloucester.

Finally,	suppose	Clint	Conley	were	to	construct	and	use	the	simulation	model	that	has	been	developed	herein.	With	the 
answers	to	the	questions	posed	earlier,	he	would	be	in	a	good	position	to	make	an	informed	decision.	Here	is	a	list	of 
the	key	data	garnered	from	the	analysis	of	the	simulation	model:

We	estimate	that	the	shape	of	the	distribution	of	daily	earnings	from	Rockport	will	be	as	shown	in	Figure	5.5.	On	most 
days	the	earnings	will	be	between	$0	and	$4,500	per	day.	However,	on	some	days	this	number	could	be	as	low	as
-$10,000.

We	estimate	that	the	probability	is	0.83	that	the	daily	earnings	in	Rockport	would	be	greater	than	in	Gloucester	on	any 
given	day.

We	estimate	that	the	probability	is	0.13	that	the	daily	earnings	in	Rockport	will	be	negative	on	any	given	day.

We	estimate	that	the	expected	daily	earnings	from	Rockport	is	$1,768.38.	This	is	higher	than	the	earnings	in	Gloucester 
would	be,	by	$393.38/day.

We	estimate	that	the	standard	deviation	of	the	daily	earnings	in	Rockport	is	$2,672.59.

The	95%	confidence	interval	for	the	actual	expected	daily	earnings	from	using	Rockport	excludes	$1,375.	Therefore, 
we	are	95%	confident	that	the	expected	daily	earnings	from	Rockport	is	higher	than	from	Gloucester.

Based	on	this	information,	Clint	Conley	would	probably	optimally	choose	to	sell	his	catch	in	Rockport,	in	spite	of	the 
risk.	Note	that	the	risk	is	not	trivial,	as	there	is	always	the	possibility	that	he	could	lose	money	on	any	given	day	(with 
probability	0.13),	and	in	fact	he	could	have	cash-flow	problems	if	he	were	extremely	unlucky.	But	unless	he	is 
extremely	averse	to	taking	risks	(in	which	case	he	might	not	want	to	be	in	the	fishing	industry	to	begin	with),	he	would 
probably	further	the	long-term	interests	of	Conley	Fisheries	by	choosing	to	sell	his	fish	in	Rockport.
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5.9
Summary	of	Simulation	Modeling,	and	Guidelines	on	the	Use	of	Simulation

A	simulation	model	attempts	to	measure	aspects	of	uncertainty	that	simple	formulas	cannot.	As	we	saw	in	the	Conley
Fisheries	problem,	even	this	simple	problem	has	no	convenient	analysis	via	formulas	related	to	probability	and	random
variables.	Of	course,	when	formulas	and	tables	can	be	used	instead	of	a	simulation	model,	then	the	manager's	task	is
that	much	easier.	But	all	too	often,	there	are	situations	that	must	be	analyzed	where	a	simulation	model	is	the	only
appropriate	methodological	tool.

The	successful	application	of	a	simulation	model	depends	on	the	ability	to	create	sample	values	of	random	variables
that	obey	a	variety	of	discrete	and	continuous	probability	distributions.	This	is	the	key	to	constructing	and	using	a
simulation	model.	Through	the	use	of	a	random	number	generator,	it	is	possible	to	create	sample	data	values	that	obey
any	discrete	distribution	or	any	continuous	distribution	by	applying	the	general	methods	outlined	in	Section	5.5	(for
discrete	random	variables)	and	Section	5.6	(for	continuous	random	variables).

Unlike	decision	trees	and	certain	other	modeling	tools,	a	simulation	has	no	internal	optimal	decision-making	capability.
Note	that	the	simulation	model	constructed	for	analyzing	the	Conley	Fisheries	problem	only	produced	data	as	the
output,	and	the	model	itself	did	not	choose	the	best	port	strategy.	Suppose	that	Conley	Fisheries	faced	the	decision	of
choosing	among	five	different	ports.	A	simulation	model	would	be	able	to	analyze	the	implications	of	using	each	port,
but	unlike	a	decision	tree	model,	the	simulation	model	would	not	choose	the	optimal	port	strategy.	In	order	to	use	a
simulation	model,	the	manager	must	enumerate	all	possible	strategy	options	and	then	direct	the	simulation	model	to
analyze	each	and	every	option.

The	results	that	one	can	obtain	from	using	a	simulation	model	are	not	precise	due	to	the	inherent	randomness	in	a
simulation.	The	typical	conclusions	that	one	can	draw	from	a	simulation	model	are	estimates	of	the	shapes	of
distributions	of	particular	quantities	of	interest,	estimates	of	probabilities	of	events	of	interest,	and	means	and	standard
deviations	of	the	probability	distributions	of	interest.	One	can	also	construct	confidence	intervals	and	other	inferences
of	statistical	sampling.

The	question	of	the	number	of	trials	or	runs	to	perform	in	a	simulation	model	is	mathematically	complex.	Fortunately,
with	today's	computing	power,	this	is	not	a	paramount	issue	for	most	problems,	because	it	is	possible	to	run	even	very
large	and	complex	simulation	models	for	many	hundreds	or	thousands	of	trials,	and	so	obtain	a	very	large	set	of	sample
data	values	to	work	with.

Finally,	one	should	recognize	that	gaining	managerial	confidence	in	a	simulation	model	will	depend	on	at	least	three
factors:

a	good	understanding	of	the	underlying	management	problem,

one's	ability	to	use	the	concepts	of	probability	and	statistics	correctly,	and

one's	ability	to	communicate	these	concepts	effectively.

5.10
Computer	Software	for	Simulation	Modeling

The	Conley	Fisheries	example	illustrates	how	easy	it	is	to	construct	a	simulation	model	using	standard	spreadsheet
software.	The	''input"	to	the	Conley	Fisheries	example	consisted	of	the	following	information:
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the	description	of	probability	distribution	of	the	random	variable	D,	the	daily	demand	in	Rockport.	This	distribution 
was	shown	in	Table	5.1.

the	description	of	the	probability	distribution	of	the	random	variable	PR,	the	daily	price	of	codfish	in	Rockport.	This	is 
a	Normal	distribution	with	mean	µ	=	$3.65	and	standard	deviation	s	=	$0.20.

the	formula	for	the	earnings	from	selling	the	catch	in	Rockport,	namely

F	=	PR	×	min(3,500,	D)	- 10,000.

Based	on	these	inputs,	we	constructed	a	simulation	model	predicated	on	the	ability	to	generate	random	variables	that 
obey	certain	distributions,	namely	a	discrete	distribution	(for	daily	demand	in	Rockport)	and	the	Normal	distribution 
(for	daily	prices	in	Rockport).	The	output	of	the	model	was	the	sample	of	observed	values	of	earnings	in	Rockport 
shown	in	Table	5.10.	Based	on	the	information	in	Table	5.10,	we	constructed	a	histogram	of	the	sample	observations 
(shown	in	Figure	5.5),	and	we	performed	a	variety	of	other	computations,	such	as	counting	the	number	of	observations 
in	a	given	range,	the	computation	of	the	sample	mean	and	the	sample	standard	deviation,	etc.

Because	simulation	modeling	is	such	a	useful	tool,	there	are	a	variety	of	simulation	modeling	software	products	that 
facilitate	the	construction	of	a	simulation	model.	A	typical	simulation	software	package	is	usually	designed	to	be	used 
as	an	add-on	to	the	Excel®	spreadsheet	software	and	has	pull-down	menus	that	allows	the	user	to	choose	from	a	variety 
of	probability	distributions	for	the	generation	of	random	variables	(such	as	the	uniform	distribution,	the	Normal 
distribution,	the	binomial	distribution,	a	discrete	distribution,	etc.)	The	software	is	designed	to	automatically	generate 
random	numbers	that	obey	these	distributions.	Furthermore,	the	typical	simulation	software	package	will	automatically 
perform	the	routine	tasks	involved	in	analyzing	the	output	of	a	simulation	model,	such	as	creating	histograms, 
estimating	probabilities,	and	estimating	means	and	standard	deviations.	All	of	this	capability	is	designed	to	free	the 
manager	to	focus	on	managerial	analysis	of	the	simulation	model,	as	opposed	to	generating	random	numbers	and 
creating	chart	output.	An	example	of	such	a	software	package	that	is	used	in	some	of	the	cases	in	Section	5.12	is	called 
CrystalBall®	and	is	described	at	the	end	of	the	Ontario	Gateway	case.

There	are	also	a	large	number	of	''specialty	simulation"	software	packages	that	are	designed	for	specific	uses	in	specific 
applications	domains.	For	example,	there	are	some	simulation	modeling	software	packages	designed	to	model 
manufacturing	operations,	and	that	offer	special	graphics	and	other	features	unique	to	a	manufacturing	environment. 
There	are	other	simulation	modeling	software	packages	designed	for	other	special	application	domains,	such	as	service 
applications,	military	applications,	and	financial	modeling.

5.11
Typical	Uses	of	Simulation	Models

Perhaps	the	most	frequent	use	of	simulation	models	is	in	the	analysis	of	a	company's	production	operations.	Many 
companies	use	simulation	to	model	the	events	that	occur	in	their	factory	production	processes,	where	the	times	that 
various	jobs	take	is	uncertain	and	where	there	are	complex	interactions	in	the	scheduling	of	tasks.	These	models	are 
used	to	evaluate	new	operations	strategies,	to	test	the	implications	of	using	new	processes,	and	to	evaluate	various 
investment	possibilities	that	are	intended	to	improve	production	and	operational	efficiency.
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Another	frequent	use	of	simulation	models	is	in	the	analysis	of	operations	where	there	are	likely	to	be	queues	(that	is,
waiting	lines).	For	example,	the	best	managed	fast-food	chains	use	simulation	models	to	analyze	the	effects	of	different
staffing	strategies	on	how	long	customers	will	wait	for	service,	and	on	the	implications	of	offering	new	products,	etc.
Banks	use	simulation	models	to	assess	how	many	tellers	or	how	many	ATMs	(automated	teller	machines)	to	plan	for	at
a	given	location.	Airlines	use	simulation	modeling	to	analyze	throughput	of	passengers	at	ticket	counters,	at	gates,	and
in	baggage	handling.	With	the	increasing	use	of	toll-free	numbers	for	serving	customers	in	a	variety	of	businesses
(from	catalog	shopping	to	toll-free	software	support	for	software	products),	many	telecommunications	companies	now
offer	simulation	modeling	as	part	of	their	basic	service	to	all	of	their	''800"	business	customers	to	help	them	assign
staffing	levels	for	their	toll-free	services.

Another	use	of	simulation	modeling	is	in	capital	budgeting	and	the	strategic	analysis	of	investment	alternatives.
Simulation	models	are	used	to	analyze	the	implications	of	various	assumptions	concerning	the	distribution	of	costs	of
an	investment,	possible	market	penetration	scenarios,	and	the	distribution	of	cash-flows,	both	in	any	given	year	as	well
as	over	the	life	of	the	investment.

As	mentioned	earlier,	simulation	models	are	used	quite	abundantly	in	the	analysis	of	military	procurement	and	in	the
analysis	of	military	strategy.	Here	in	particular,	simulation	modeling	is	used	to	great	advantage,	as	the	alternative	of
testing	new	hardware	or	tactics	in	the	field	is	not	particularly	attractive.

Simulation	is	also	used	in	financial	engineering	to	assign	prices	and	analyze	other	quantities	of	interest	for	complex
financial	instruments,	such	as	derivative	securities,	options,	and	futures	contracts.

This	is	only	a	small	list	of	the	ways	that	simulation	models	are	currently	used	by	managers.	With	the	rapid	advances	in
both	computer	hardware	and	the	ease	of	use	of	today's	simulation	modeling	software,	there	is	enormous	potential	for
simulation	models	to	add	even	more	value	to	the	educated	and	creative	manager	who	knows	how	to	wisely	use	the
tools	of	simulation.

5.12
Case	Modules

The	Gentle	Lentil	Restaurant

An	Excellent	Job	Offer

Sanjay	Thomas,	a	second-year	MBA	student	at	the	M.I.T.	Sloan	School	of	Management,	is	in	a	very	enviable	position:
He	has	just	received	an	excellent	job	offer	with	a	top-flight	management	consulting	firm.	Furthermore,	the	firm	was	so
impressed	with	Sanjay's	performance	during	the	previous	summer	that	they	would	like	Sanjay	to	start	up	the	firm's
practice	in	its	new	Bombay	office.	The	synergy	of	Sanjay's	previous	consulting	experiences	(both	prior	to	Sloan	and
during	the	previous	summer),	his	Sloan	MBA	education,	and	his	fluency	in	Hindi	offer	an	extremely	high	likelihood
that	Sanjay	would	be	very	successful,	if	he	were	to	accept	the	firm's	offer	and	develop	the	Bombay	office's	practice	in
India	and	southern	Asia.

	




